WEST BENGAL STATE UNIVERSITY

B.Sc. Honours Part-III Examination, 2020

Mathematics

PAPER-MTMA-V

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

Marks-20

Answer Question No. 1 and any one from the rest

1. Answer any three questions from the following:
(a) The sets $C, D \subset \mathbb{R}$ are such that C is compact and D is closed, verify which one of $C \cap D$ and $C \cup D$ is a compact set.
(b) Examine if the function $f:[0,1] \rightarrow \mathbb{R}$ defined by $f(x)=\sin \frac{\pi}{2 x}, x \neq 0$, $f(0)=0$, is of bounded variation.
(c) Show that the sequence $\left\{f_{n}\right\}$, defined by $f_{n}(x)=1-x^{n}, 0 \leq x \leq 1, n \in \mathbb{N}$ is pointwise convergent but not uniformly convergent.
(d) Verify whether the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
f(x) & =x, x \text { is rational } \\
& =1, x \text { is irrational }
\end{aligned}
$$

is Riemann-integrable.
(e) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} n(-2)^{n}(x-3)^{n}$.
(f) Test the convergence of the improper integral $\int_{1}^{\infty} \frac{d x}{x^{p}}, \quad p>0$ for different values of p.
(g) State the relation between beta function and gamma function. Using it show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
(h) Using beta and gamma functions evaluate $\int_{0}^{\pi / 2} \sin ^{8} x \cos ^{12} x d x$.
(i) Change the integral $\iint_{R}\left(x^{2}+y^{2}\right)^{3 / 2} d x d y$ into polar coordinates, where R is the region in the upper half of the coordinate plane bounded by the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}, a<b$.
2. (a) Prove that every compact subset of R is closed. Is the converse true? Support your answer.
(b) Let K be a compact subset of \mathbb{R} and E be an infinite subset of K. Show that E has a limit point in K.
(c) Let $f: K \rightarrow \mathbb{R}$ be a continuous function on a compact subset K of \mathbb{R}. Show that f is uniformly continuous.
3. (a) Show that the sequence of functions $\left\{f_{n}\right\}$ is uniformly convergent on $[0, \infty)$, where for all $n \in \mathbb{N}$,

$$
f_{n}(x)=x e^{-n x}, x \geq 0
$$

(b) Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable for all $n \in \mathbb{N}$ and let the sequence of functions $\left\{f_{n}\right\}$ be uniformly convergent to a function f on $[a, b]$. Show that f is Riemann integrable on $[a, b]$ and

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

(c) Show that the sequence of functions $\left\{f_{n}\right\}$ converges uniformly on \mathbb{R}, where for all $n \in \mathbb{N}$,

$$
f_{n}(x)=\frac{\sin n x}{\sqrt{n}}, x \in \mathbb{R}
$$

Also show that at $x=0, \lim _{n \rightarrow \infty} f_{n}^{\prime}(x) \neq f^{\prime}(x)$.
4. (a) If the series $\sum_{n=1}^{\infty} f_{n}(x)$ is uniformly convergent on $[a, b]$ and g is a bounded function on $[a, b]$, then prove that the series $\sum_{n=1}^{\infty} g(x) f_{n}(x)$ is uniformly convergent on $[a, b]$.
(b) With proper justification, show that

$$
\lim _{x \rightarrow 0} \sum_{k=2}^{\infty} \frac{\cos k x}{k(k+1)}=\frac{1}{2}
$$

(c) A series $\sum_{n=1}^{\infty} f_{n}(x)$ of differentiable functions on $[0,1]$ is such that for all $n \in \mathbb{N}$ and $x \in[0,1]$,

$$
\sum_{k=1}^{n} f_{k}(x)=\frac{\log \left(1+n^{4} x^{2}\right)}{2 n^{2}}
$$

Show that $\frac{d}{d x} \sum_{n=1}^{\infty} f_{n}(x)=\sum_{n=1}^{\infty} f_{n}^{\prime}(x)$ for all $x \in[0,1]$.
5. (a) Use the result that $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$ for $|x|<1$ to show that

$$
\log (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n} \text { for }|x| \leq 1
$$

Hence deduce that $\log 2=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$
(b) Show that the integral $\int_{0}^{2} \frac{\sin x}{x^{p}} d x$ is convergent if and only if $p<2$.
(c) Use differentiation under integral sign to prove that

$$
\int_{0}^{\pi / 2} \frac{\log (1+\cos \alpha \cos x)}{\cos x} d x=\frac{1}{2}\left(\frac{\pi^{2}}{4}-\alpha^{2}\right)
$$

6. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded monotone function. Show that f is Riemann integrable on $[a, b]$.
(b) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be bounded functions such that $f=g$ except at a finite number of points in $[a, b]$. If f is Riemann integrable over $[a, b]$, then show that g is Riemann integrable over $[a, b]$ and $\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x$.
(c) Justify with an example that, a bounded function on a closed interval which is not Riemann integrable may have a primitive.
7. (a) Show that $\frac{1}{2}<\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}+x^{3}}} d x<\frac{\pi}{6}$.
(b) For $0<a<b<\infty$, prove that $\left|\int_{a}^{b} \frac{\sin x}{x} d x\right| \leq \frac{2}{a}$.
(c) Evaluate $\int_{0}^{1} f d x$ and $\int_{0}^{1} f d x$ and hence examine the integrability of f on $[0,1]$ where

$$
f(x)= \begin{cases}x+x^{3} ; & x \in \mathbb{Q} \cap[0,1] \\ x^{2}+x^{3} ; & x \in[0,1]-\mathbb{Q}\end{cases}
$$

8. (a) If $f:[a, b] \rightarrow \mathbb{R}$ is a bounded Riemann integrable function on $[a, b]$ and

$$
F(x)=\int_{a}^{x} f(t) d t \text { for all } x \in[a, b]
$$

then show that F is of bounded variation on $[a, b]$.
(b) Let $f, g:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$ and $g(x)=\left\{\begin{array}{cl}x^{2} \sin \frac{1}{x}, & 0<x \leq 1 \\ 0 \quad, & x=0\end{array}\right.$

Show that the plane curve $\gamma(x)=(f(x), g(x))$ is rectifiable on $[0,1]$.
(c) Let $a>0$ be a constant. Find the length of one arch of the cycloid $x=a(\theta-\sin \theta), \quad y=a(1-\cos \theta)$.
9. (a) With proper justification, apply Mean Value Theorem for functions of two variables to the function $f(x, y)=\sin x \cos y$ to show that there is a $\theta \in(0,1)$ for which $\frac{3}{4}=\frac{\pi}{3} \cos \frac{\pi \theta}{3} \cos \frac{\pi \theta}{6}-\frac{\pi}{6} \sin \frac{\pi \theta}{3} \sin \frac{\pi \theta}{6}$.
(b) Obtain Taylor's expansion of the function $\log \left(\frac{x+y}{2}\right), x>0, y>0$ about the point $(1,1)$ up to the terms of degree three.
(c) Use Lagrange's method of undetermined multiplier to find the stationary value of $u=a^{3} x^{2}+b^{3} y^{2}+c^{3} z^{2}$ where $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.
10.(a) Find the Fourier series of the function

$$
\begin{aligned}
f(x) & =x-\pi, \quad-\pi \leq x<0 \\
& =\pi-x, \quad 0 \leq x \leq \pi
\end{aligned}
$$

in the interval $[-\pi, \pi]$. Find the sum of the series at $x=0$ and hence deduce the identity $\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots \cdots$.
(b) Evaluate the integral $\iint_{R} \frac{2 x^{2}+y^{2}}{x y} d x d y$, where R is the region in the positive 5 quadrant of the $x y$-plane bounded by circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$ and the parabolas $y^{2}=4 c x$ and $y^{2}=4 d x, 0<a<b, 0<c<d$ by taking the substitution $x^{2}+y^{2}=u, \frac{y^{2}}{4 x}=v$.

GROUP-B

(Marks-15)

Answer any one question from the following

11.(a) Define (i) open ball (ii) open set in a metric space. Prove that if $B\left(a_{1}, r_{1}\right)$ and $B\left(a_{2}, r_{2}\right)$ are two open balls then for any $x \in B\left(a_{1}, r_{1}\right) \cap B\left(a_{2}, r_{2}\right)$ there exists $r>0$ such that $B(x, r) \subset B\left(a_{1}, r_{1}\right) \cap B\left(a_{2}, r_{2}\right)$.
(b) Let (X, d) be a metric space and $d^{*}: X \times X \rightarrow R$ be defined by

$$
d^{*}(x, y)=\frac{d(x, y)}{1+d(x, y)}, \quad x, y \in X
$$

Prove that $\left(X, d^{*}\right)$ is a metric space. Examine if the metric d^{*} is bounded.
(c) Let (X, d) be a metric space. Prove that a set $V \subset X$ is open if and only if its complement $X-V$ is closed.
12.(a) Let (X, d) be a metric space and $A, B \subset X$. Prove that $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}$ where A^{\prime} denotes the derived set of A. Does the result hold if \cup is replaced by \cap ? Support your answer.
(b) Define a Cauchy sequence in a metric space. Let (X, d) denote a discrete metric space, where $d: X \times X \rightarrow \mathbb{R}$ defined by $d(x, y)=1$ if $x \neq y$ and $d(x, y)=0$ if $x=y, x, y \in X$. Show that in a discrete metric space a sequence is a Cauchy sequence if and only if it is eventually constant.
(c) When is a metric space called complete? Show that the discrete metric space is a complete metric space.
(d) Define completion of a metric space. What is the completion of the metric space consisting of the rational numbers?

GROUP-C

(Marks-15)

Answer any one question from the following

13.(a) If $f(z)=u(x, y)+i v(x, y)$ where $u(x, y)$ and $v(x, y)$ are both real-valued functions, be defined on a region G except possibly at $z_{0}=x_{0}+i y_{0}$ then prove that $\lim _{z \rightarrow z_{0}} f(z)=a+i b$ if and only if $\lim _{\substack{x \rightarrow x_{0} \\ y \rightarrow y_{0}}} u(x, y)=a$ and $\lim _{\substack{x \rightarrow x_{0} \\ y \rightarrow y_{0}}} v(x, y)=b$.
(b) If f be an analytic function defined on $E \subseteq \mathbb{C}$ such that $|f|$ is constant on E then prove that f is a constant function on E.
(c) Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be defined by

$$
\begin{aligned}
f(x+i y) & =\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}}, x+i y \neq 0 \\
& =0 \quad, x+i y=0
\end{aligned}
$$

Prove that f satisfies the CR equations at the origin but f is not differentiable at the origin.
(d) If $f: D \rightarrow \mathbb{C}$ be continuous at $z_{0} \in D$ and $\left\{z_{n}\right\}$ be a sequence in D converging to z_{0} then prove that $\left\{f\left(z_{n}\right)\right\}$ converges to $f\left(z_{0}\right)$.

B.Sc./Part-III/Hons./MTMA-V/2020

14.(a) Let $f: G \rightarrow \mathbb{C}$ where $f(x+i y)=u(x, y)+i v(x, y)$ be defined on a region G and f be differentiable at $z_{0}=x_{0}+i y_{0}$. Prove that the functions $u(x, y)$ and $v(x, y)$ are differentiable at $\left(x_{0}, y_{0}\right)$ and the following equations are satisfied there at

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

(b) Prove that the function $f(z)=\bar{z}$ on \mathbb{C} is not differentiable at any point in \mathbb{C}.
(c) Show that $u(x, y)=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ is harmonic and find the analytic function f of which $u(x, y)$ is the real part.
(d) Show that the function $f(x+i y)=x^{2}+i y^{2}$ is nowhere analytic.

