

WEST BENGAL STATE UNIVERSITY

B.Sc. General Part-III Examination, 2020

ELECTRONICS

PAPER-ELTG-IV-A

Time Allotted: 2 Hours

Full Marks: 50

 $2 \times 10 = 20$

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

- 1. Answer any *ten* questions from the following:
 - (a) Define "modulation index" in AM system.
 - (b) What do you mean by demodulation?
 - (c) State any two advantages of FM over AM.
 - (d) Define characteristic impedance of a transmission line.
 - (e) What do you mean by lossless line?
 - (f) What factors determine antenna gain?
 - (g) What is the cut-off frequency of a waveguide?
 - (h) Mention the function of \overline{RD} and \overline{WR} signal on a memory chip.
 - (i) Write two different instruction by which we can clear accumulator.
 - (j) What is the result of execution of the following instruction?

(i) ADDM (ii) STA 8050H

- (k) What do you mean by over modulation, under modulation and 100% modulation in AM system?
- (l) What do you mean by radiation resistance of an antenna?
- (m) What is stack? On what principle does it work?
- (n) What is the need of ALE signal in 8085 μ p?

GROUP-B

	Answer any two questions from the following	$5 \times 2 = 10$
	Obtain an expression for the instantaneous voltage of an amplitude wave with single tone sinusoidal modulation.	5
	Derive the expression for the input impedance of a transmission line of length L and having characteristic impedance ' Z_0 '.	5
(a)	Mention the different way in which a radio-wave can travel from transmitting antenna to receiving antenna.	[2+(1+1+1)]
(b)	What are ground waves? Where are they used and what are their advantages?	
	Briefly discuss on the radiation mechanism of dipole antenna	5

5.

2.

3.

4.

B.Sc./Part-III/Gen./ELTG-IV-A/2020

6.	What is the result of execution of the following instruction? MVIA, 35H; JNC2800H; LHI H, 2400H; PUSH B; STA 2070 H.	5
7.	What do you mean by fetch cycle, execution cycle and instruction cycle?	5
	GROUP-C	
	Answer any two questions from the following	$10 \times 2 = 20$
8. (a)	What are the characteristics of electromagnetic wave? What are the main methods of propagation of electromagnetic waves in radio communication?	2+3+5
(b)	Explain the main features of sky-wave of electromagnetic waves.	
9. (a)	Define the following terms in connection with an antenna:	6+4
	(i) Directivity (ii) Effective aperture (iii) Power density	
(b)	Calculate the modified gain in dB of a parabolic reflector when its size is made four times than it was.	
10.(a)	Show that an AM wave can be represented by a carrier and two side-frequency for each modulation frequency.	3+2+5
(b)	Mention the technique of demodulation of AM move.	
(c)	Briefly explain the synchronous detection process.	
11.(a)	Write an 8085 assembly language program to add two 16-bit number. Results may contain "carry".	5+5
(b)	Write an 8085 assembly language program to add two BCD numbers. Result should be in BCD format.	
12.(a)	Draw a net block diagram of 8085 microprocessor.	6+4
(b)	Explain with an example—(i) Direct mode of addressing (ii) Register indirect mode of addressing.	
13.	 Write a short note on: (i) Automatic and Electronic exchanges. (ii) Equivalent noise bandwidth and equivalent noise resistance. 	5+5
14.	What are the functions of the following:	$2\frac{1}{2} \times 4 = 10$
	(1) Control and status signal	
	(ii) Serial I/O signals	
	(iii) DMA signals	
	(iv) Reset signals.	

__×___

_