WEST BENGAL STATE UNIVERSITY
B.Sc. Honours Part-III Examination, 2020

Mathematics

Paper-MTMA-VIII-A
Time Allotted: 2 Hours
Full Marks: 50
The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

SECTION-I

(LINEAR ALGEBRA)
Answer any one question from the following

1. (a) Prove that two finite dimensional vector spaces V and W over a field F are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$.
(b) Let $P_{2}(\mathbb{R})$ be the vector space of polynomials in x of degree atmost 2 with real coefficients and $M_{2}(\mathbb{R})$ be the vector space of 2×2 real matrices. Write the standard order bases B_{1} of $P_{2}(\mathbb{R})$ and B_{2} of $M_{2}(\mathbb{R})$. Determine the matrix [T] of the linear transformation $T: P_{2}(\mathbb{R}) \quad \rightarrow \quad M_{2}(\mathbb{R}) \quad$ defined by $T(f)=\left[\begin{array}{cc}f(0)-f(2) & 0 \\ 0 & f(1)\end{array}\right]$, relative to the pair of ordered bases B_{1} and B_{2}. Hence, out of the matrix [T], find the rank and nullity of T. Also, determine a basis of range space of T.
2. (a) For a positive integer n, P_{n} denotes the vector space of polynomials of degree $\leq n$, over the field of real numbers. Let $T: P_{2} \rightarrow P_{4}$ be a linear transformation defined by $T(f(x))=2 f^{\prime}(x)+\int_{0}^{x} t f(t) d t$, for all $f(x) \in P_{2}$. Prove that T is injective.
(b) Let $B_{1}=\{(1,2),(2,-1)\}, B_{2}=\{(1,0),(0,1)\}$ be two ordered bases of \mathbb{R}^{2}. If the matrix of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ relative to the pair of ordered bases B_{1} and B_{2} is given by $\left[\begin{array}{cc}4 & 3 \\ 2 & -4\end{array}\right]$, find the vector $T(5,5)$ in \mathbb{R}^{2}.
(c) Let $T_{1}, T_{2}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be linear transformations such that $\operatorname{rank}\left(T_{1}\right)=3$ and nullity $\left(T_{2}\right)=3$. Let $T_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T_{3} \circ T_{1}=T_{2}$. Find the rank of $T_{3} .\left(T_{3} \circ T_{1}\right.$ stands for mapping composition of T_{3} and T_{1}).

SECTION-II
 (MODERN ALGEBRA)

Answer any one question from the following
3. (a) Let $f: G \rightarrow G^{\prime}$ be a homomorphism of groups. Prove that ker f is a normal subgroup of G. Also prove that f is injective if and only if $\operatorname{ker} f=\left\{e_{G}\right\}$, where e_{G} represents the identity element of G.
(b) Show that the additive group of rational numbers Q is not isomorphic to the multiplicative group of positive rational numbers Q^{+}.
(c) Let G be a group and $f: G \rightarrow G$ be a function defined by $f(a)=a^{-1}$ for any $a \in G$. Prove that f is a homomorphism if and only if G is commutative.
4. (a) If H and K are normal subgroups of a group G such that $H \cap K=\left\{e_{G}\right\}$ where e_{G} is the identity element of G, then show that $h k=k h$ for all $h \in H$ and $k \in K$.
(b) If H is the only subgroup of order n in a group G, then prove that H is a normal subgroup of G.
(c) If H is a subgroup of a group G and $N(H)=\left\{x \in G: x H x^{-1}=H\right\}$, then show that
(i) $N(H)$ is a subgroup of G and
(ii) H is normal in $N(H)$.

SECTION-III

(BOOLEAN ALGEBRA)

Answer any one question from the following

5. (a) Prove that the set S of all positive divisors of 70 forms a Boolean algebra
(b) Find the Boolean function that represents the circuit below and hence find the simplest circuit.

B.Sc./Part-III/Hons./MTMA-VIII-A/2020

6. (a) In a Boolean algebra, show that
(i) $a+a^{\prime} b=a+b$
(ii) $\left(a+b^{\prime}\right)\left(a^{\prime}+b^{\prime}\right)(a+b)\left(a^{\prime}+b\right)=0$
for any $a, b \in B$.
(b) Express the Boolean expression $(x+y)\left(x+y^{\prime}\right)\left(x^{\prime}+z\right)$ in DNF in the variables x, y and also express it in DNF in the variables x, y, z.

GROUP-B (DIFFERENTIAL EQUATION-III)

Answer any one question from the following
7. (a) Find the power series solution of $y^{\prime \prime}-x y^{\prime}+x^{2} y=0$ about $x=0$.
(b) Find the inverse Laplace transform of $\frac{1}{s^{3}\left(s^{2}+1\right)}$.
(c) If $L^{-1}\{f(s)\}=F(t)$, then prove $L^{-1}\left\{e^{-a s} f(s)\right\}=G(t)$, where

$$
G(t)=\left\{\begin{array}{cc}
F(t-a) & , t>a \\
0, & t<a
\end{array}\right.
$$

where L^{-1} denotes inverse Laplace transform.
8. (a) Find power series solution of $y^{\prime \prime}+(x-1) y^{\prime}+y=0$ in power of $(x-2)$.
(b) Use the convolution theorem to find $L^{-1}\left\{\frac{1}{(s-1) \sqrt{s}}\right\}$, where L^{-1} denotes inverse Laplace transform.
(c) Solve using Laplace transform: $\frac{d^{2} y}{d x^{2}}+9 y=\cos 2 t$ if $y(0)=1, y(\pi / 2)=-1$.

GROUP-C

(TENSOR CALCULUS)

Answer any one question from the following

9. (a) Let $a_{i j}$ be a symmetric $(0,2)$ type tensor satisfying $\left|a_{i j}\right| \neq 0$ and let $b^{i j}$ be the cofactor of $a_{i j}$ in $\left|a_{i j}\right|$ divided by $\left|a_{i j}\right|$. Prove that $b^{i j}$ is a symmetric $(2,0)$ type tensor.
(b) $A_{i j}^{l m}$ is a $(2,2)$ type tensor and B_{j}^{i} is a $(1,1)$ type tensor. Prove that $A_{i j}^{l m} B_{j}^{i}$ is $(2,2)$ type tensor.

B.Sc./Part-III/Hons./MTMA-VIII-A/2020

(c) Define covariant derivative $A_{i j, k}$ of a (0,2) type tensor $A_{i j}$ and prove that $A_{i j, k}$ is symmetric in i and j if $A_{i j}$ is symmetric. Find the value of $g_{i j, k}$, where $g_{i j}$ is the fundamental tensor.
10.(a) The components of a covariant tensor in the x-system are
$A_{11}=4, A_{12}=A_{21}=0, A_{22}=7$. Find its components in the \bar{x}-system where

$$
\begin{aligned}
& x^{1}=4\left(\bar{x}^{1}\right)^{2}-7\left(\bar{x}^{2}\right)^{2} \\
& x^{2}=4 \bar{x}^{1}-5 \bar{x}^{2}
\end{aligned}
$$

(b) Show that in an n-dimensional space a covariant skew-symmetric tensor of second order has at most $\frac{1}{2} n(n-1)$ different arithmetic components.
(c) Show that in a Riemannian space V_{n} of dimension n with metric tensor $g_{i j}$,

$$
\left\{\begin{array}{c}
i \\
i
\end{array}\right\}=\frac{\partial}{\partial x^{j}}(\log \sqrt{g})
$$

