

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours Part-III Examination, 2020

MATHEMATICS

PAPER-MTMA-VIII-A

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

SECTION-I

(LINEAR ALGEBRA)

Answer any one question from the following $10 \times 1 = 10$

- 1. (a) Prove that two finite dimensional vector spaces V and W over a field F are 4 isomorphic if and only if $\dim V = \dim W$.
 - (b) Let $P_2(\mathbb{R})$ be the vector space of polynomials in x of degree at most 2 with real 1+2+2+1coefficients and $M_2(\mathbb{R})$ be the vector space of 2×2 real matrices. Write the standard order bases B_1 of $P_2(\mathbb{R})$ and B_2 of $M_2(\mathbb{R})$. Determine the matrix [T] the linear transformation $T: P_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$ defined by of $T(f) = \begin{bmatrix} f(0) - f(2) & 0 \\ 0 & f(1) \end{bmatrix}, \text{ relative to the pair of ordered bases } B_1 \text{ and } B_2.$ Hence, out of the matrix [T], find the rank and nullity of T. Also, determine a basis of range space of T.
- 2. (a) For a positive integer n, P_n denotes the vector space of polynomials of degree $\leq n$, over the field of real numbers. Let $T: P_2 \to P_4$ be a linear transformation defined by $T(f(x)) = 2f'(x) + \int_{0}^{x} t f(t) dt$, for all $f(x) \in P_2$. Prove

that *T* is injective.

- (b) Let $B_1 = \{(1, 2), (2, -1)\}, B_2 = \{(1, 0), (0, 1)\}$ be two ordered bases of \mathbb{R}^2 . If the matrix of a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ relative to the pair of ordered bases B_1 and B_2 is given by $\begin{bmatrix} 4 & 3 \\ 2 & -4 \end{bmatrix}$, find the vector T(5, 5) in \mathbb{R}^2 .
- (c) Let $T_1, T_2: \mathbb{R}^5 \to \mathbb{R}^3$ be linear transformations such that rank $(T_1) = 3$ and nullity $(T_2) = 3$. Let $T_3 : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that $T_3 \circ T_1 = T_2$. Find the rank of T_3 . $(T_3 \circ T_1 \text{ stands for mapping composition of } T_3$ and T_1).

1

4

3

3

SECTION-II

(MODERN ALGEBRA)

		Answer any one question from the following	8×1 = 8
3.	(a)	Let $f: G \to G'$ be a homomorphism of groups. Prove that ker f is a normal subgroup of G . Also prove that f is injective if and only if ker $f = \{e_G\}$, where e_G represents the identity element of G .	4
	(b)	Show that the additive group of rational numbers Q is not isomorphic to the multiplicative group of positive rational numbers Q^+ .	2
	(c)	Let G be a group and $f: G \to G$ be a function defined by $f(a) = a^{-1}$ for any $a \in G$. Prove that f is a homomorphism if and only if G is commutative.	2
4.	(a)	If <i>H</i> and <i>K</i> are normal subgroups of a group <i>G</i> such that $H \cap K = \{e_G\}$ where e_G is the identity element of <i>G</i> , then show that $hk = kh$ for all $h \in H$ and $k \in K$.	2
	(b)	If H is the only subgroup of order n in a group G , then prove that H is a normal subgroup of G .	2
	(c)	If <i>H</i> is a subgroup of a group <i>G</i> and $N(H) = \{x \in G : xHx^{-1} = H\}$, then show that	2+2
		(i) $N(H)$ is a subgroup of G and	

(ii) H is normal in N(H).

SECTION-III

(BOOLEAN ALGEBRA)

Answer any *one* **question from the following** $7 \times 1 = 7$

5. (a) Prove that the set S of all positive divisors of 70 forms a Boolean algebra $(S, \lor, \land, ')$, where

$$a \lor b = 1.\text{c.m. of } a, b$$

 $a \land b = \text{g.c.d. of } a, b$
 $a' = \frac{70}{a}$

for any $a, b \in S$.

(b) Find the Boolean function that represents the circuit below and hence find the 3 simplest circuit.

B.Sc./Part-III/Hons./MTMA-VIII-A/2020

6. (a) In a Boolean algebra, show that

(i)
$$a + a'b = a + b$$

- (ii) (a+b')(a'+b')(a+b)(a'+b) = 0for any $a, b \in B$.
- (b) Express the Boolean expression (x + y)(x + y')(x' + z) in DNF in the variables 3 *x*, *y* and also express it in DNF in the variables *x*, *y*, *z*.

GROUP-B

(DIFFERENTIAL EQUATION-III)

Answer any *one* question from the following $15 \times 1 = 15$

7. (a) Find the power series solution of $y'' - xy' + x^2y = 0$ about x = 0. 5

(b) Find the inverse Laplace transform of
$$\frac{1}{s^3(s^2+1)}$$
. 5

(c) If
$$L^{-1}{f(s)} = F(t)$$
, then prove $L^{-1}{e^{-as} f(s)} = G(t)$, where

$$G(t) = \begin{cases} F(t-a) , t > a \\ 0 , t < a \end{cases}$$
5

where L^{-1} denotes inverse Laplace transform.

8. (a) Find power series solution of
$$y'' + (x-1)y' + y = 0$$
 in power of $(x-2)$.

(b) Use the convolution theorem to find $L^{-1}\left\{\frac{1}{(s-1)\sqrt{s}}\right\}$, where L^{-1} denotes inverse 5

Laplace transform.

(c) Solve using Laplace transform:
$$\frac{d^2y}{dx^2} + 9y = \cos 2t$$
 if $y(0) = 1$, $y(\pi/2) = -1$. 5

GROUP-C

(TENSOR CALCULUS)

Answer any *one* question from the following $10 \times 1 = 10$

- 9. (a) Let a_{ij} be a symmetric (0, 2) type tensor satisfying |a_{ij} | ≠ 0 and let b^{ij} be the cofactor of a_{ij} in |a_{ij} | divided by |a_{ij}|. Prove that b^{ij} is a symmetric (2, 0) type tensor.
 - (b) A_{ij}^{lm} is a (2, 2) type tensor and B_j^i is a (1, 1) type tensor. Prove that $A_{ij}^{lm}B_j^i$ is 2 (2, 2) type tensor.

3

2 + 2

B.Sc./Part-III/Hons./MTMA-VIII-A/2020

(c) Define covariant derivative $A_{ij,k}$ of a (0, 2) type tensor A_{ij} and prove that $A_{ij,k}$ is 1+2+2 symmetric in *i* and *j* if A_{ij} is symmetric. Find the value of $g_{ij,k}$, where g_{ij} is the fundamental tensor.

10.(a) The components of a covariant tensor in the *x*-system are 3 $A_{11} = 4, A_{12} = A_{21} = 0, A_{22} = 7$. Find its components in the \overline{x} -system where $x^1 = 4(\overline{x}^1)^2 - 7(\overline{x}^2)^2$ $x^2 = 4\overline{x}^1 - 5\overline{x}^2$

(b) Show that in an *n*-dimensional space a covariant skew-symmetric tensor of 3 second order has at most $\frac{1}{2}n(n-1)$ different arithmetic components.

4

(c) Show that in a Riemannian space V_n of dimension *n* with metric tensor g_{ij} ,

—×—

$$\begin{cases} i \\ i \\ j \end{cases} = \frac{\partial}{\partial x^j} \left(\log \sqrt{g} \right)$$