WEST BENGAL STATE UNIVERSITY

DEROZIO MEMORIAL COLLEGE

B.SC Honours Semester IV Internal Assessment 2020(online mode)

Subject: MTMA
Paper Code:COR09T
Time Allotted:1hour
Full Marks:10

Answer any five from the following questions $5 \times 2=10$
1.Let f be a real valued function on $[1, \infty)$ then show that
$f(x)+f(y)=f(x y)$ where $f^{\prime}(x)=\frac{1}{x}$ for all $x \in[1, \infty) \& f(1)=0$
2.Show that $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}{ }^{2}$ and $\mathrm{Ax}^{2}+2 \mathrm{Hxy}+\mathrm{By}{ }^{2}$ are independent unless $\frac{a}{A}=\frac{b}{B}=\frac{h}{H} \quad 2$
3.Find the value of the double limit $\lim _{(x, y) \rightarrow(0,0)}\left(1+y^{2} \frac{\sin x}{x} \quad 2\right.$
4. Let $f: R \rightarrow R$ be a twice differentiable function. If $g(u, v)=f\left(u^{2}-v^{2}\right)$, then

Find the value $\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial v^{2}}=$?
5.What is the minimum distance from the origin $(0,0)$ to the hyperbola $x^{2}+8 x y+7 y^{2}=225$
6.Verify Green's theorem in the $x y$ - plane for $\oint\left\{\left(x y+y^{2}\right) d x+x^{2} d y\right\}$

Where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$
7.Compute the circulation of the vector point function $\mathbf{F}=\mathrm{y}^{2} \mathbf{i}+x j-z^{2} \mathbf{k}$ around the circle: $x^{2}+y^{2}=9, Z=2$, using Stokes Theorem
8. Evaluate $\iiint\left(x^{2}+y^{2}+z^{2}\right) \mathrm{dv}$, where V is the closed spherical region bounded by the sphere $x^{2}+y^{2}+z^{2}=9$

